首页> 外文OA文献 >Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
【2h】

Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis

机译:酿酒酵母乙酰辅酶A合成酶的替代途径通过胞浆乙酰辅酶A合成的替代途径进行

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis. After evaluating expression of different bacterial genes encoding acetylating acetaldehyde dehydrogenase (A-ALD) and pyruvate-formate lyase (PFL), acs1? acs2? S. cerevisiae strains were constructed in which A-ALD or PFL successfully replaced ACS. In A-ALD-dependent strains, aerobic growth rates of up to 0.27 h?1 were observed, while anaerobic growth rates of PFL-dependent S. cerevisiae (0.20 h?1) were stoichiometrically coupled to formate production. In glucose-limited chemostat cultures, intracellular metabolite analysis did not reveal major differences between A-ALD-dependent and reference strains. However, biomass yields on glucose of A-ALD- and PFL-dependent strains were lower than those of the reference strain. Transcriptome analysis suggested that reduced biomass yields were caused by acetaldehyde and formate in A-ALD- and PFL-dependent strains, respectively. Transcript profiles also indicated that a previously proposed role of Acs2 in histone acetylation is probably linked to cytosolic acetyl-CoA levels rather than to direct involvement of Acs2 in histone acetylation. While demonstrating that yeast ACS can be fully replaced, this study demonstrates that further modifications are needed to achieve optimal in vivo performance of the alternative reactions for supply of cytosolic acetyl-CoA as a product precursor.
机译:胞质乙酰辅酶A是酿酒酵母生产的许多生物技术相关化合物的前体。在这种酵母中,胞质乙酰辅酶A的合成和生长严格取决于乙酰辅酶A合成酶(ACS)的Acs1或Acs2同工酶的表达。由于在ACS反应中ATP水解为AMP和焦磷酸盐会限制乙酰辅酶A衍生产品的最大收率,因此本研究探索了通过两种不依赖于ATP的乙酰辅酶A合成途径替代ACS的方法。在评估编码乙酰化乙醛脱氢酶(A-ALD)和丙酮酸甲酸酯裂解酶(PFL)的不同细菌基因的表达后,acs1? acs2?构建了酿酒酵母菌株,其中A-ALD或PFL成功替代了ACS。在依赖A-ALD的菌株中,观察到好氧生长速率高达0.27 h?1,而PFL依赖的酿酒酵母(0.20 h?1)的厌氧生长速率在化学计量上与甲酸盐的产生有关。在葡萄糖有限的恒化器培养物中,细胞内代谢产物分析未揭示A-ALD依赖和参考菌株之间的主要差异。然而,依赖于A-ALD和PFL的菌株的葡萄糖生物量产率低于参考菌株。转录组分析表明,在A-ALD和PFL依赖菌株中,乙醛和甲酸盐分别导致生物量减少。转录物谱还表明,先前提出的Acs2在组蛋白乙酰化中的作用可能与胞质乙酰CoA水平有关,而不是与Acs2直接参与组蛋白乙酰化有关。在证明酵母ACS可以完全替代的同时,这项研究表明,需要进一步的修饰以实现替代反应的最佳体内性能,以提供胞质乙酰基CoA作为产物前体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号